UNIT VI TRANSPORT
LAYER

ISyllabus: Transport Layer - The Internet Transport Protocols: Udp. the Internet Transport Protocols: Tep
Application Layer ~T he Domain Name System: The DNS Name Space, Resource Records, Name

Servers, Electronic Mail: Architecture and Services, The User Agent, Message Formats, Message
Transfer, Final Delivery

Introduction:

The network layer provides end-to-end packet delivery using data-grams or virtual circuits. The transport
layer builds on the network layer to provide data transport from a process on a source machine to a process on a
destination machine with a desired level of reliability that is independent of the physical networks currently in use. It

provides the abstractions that applications need to use the network.

Transport Entity: The hardware and/or sof tware which make use of services provided by the network layer, (within

the transport layer) is called transport entity.
Transport Service Provider: Layers1to 4 are called Transport Service Provider.
Transport Service User: The upper layers i. e., layers § to 7 are called Transport Service User.

Transport Service Primitives: Which allow transport users (application programs) to access the transport

service.

TPDU (T ransport Protocol Data Unit): Transmissions of message between 2 transport entities are carried out by
TPDU. The transport entity carries out the transport service primitives by blocking the caller and sending a packet
the service. Lncapsulated in the payload of this packet is a transport layer message for the server’s transport entity.
The task of the transport layer is to provide reliable, cost-ef fective data transport from the source machine to the

destination machine, independent of physical network or networks currently in use.

Transport Laver Transport Layer
| TPDU ||
T:aupnrt Transpor T:ﬁ-t'ﬂpmi
1 4.{ I—- vht
| il protacal | ¥
HOST-1 HOST-2

Page 1

TRANSPORT SERVICE
1. Services Provided to the Upper Layers
The ultimate goal of the transport layer is to provide efficient, reliable, and cost-ef fective data
transmission service to its users, normally processes in the application layer. To achieve this, the transport layer
makes use of the services pro-vided by the network layer. The software and/or hardware within the transport layer
that does the work is called the transport entity. The transport entity can be located in the operating system kernel,

in a library package bound into network applications, in a separate user process, or even on the network interface
card.

Host 1 Host 2
Application Application
(or session) Applicationtransport lar session)

I2YEr Transpart ntarface ayer

_ o addrecs

171

Sagrmeant

Transpart — Transpart
antity Transpart entity
protoco 1
Matwark — e
addrass Transpartmatwark
Matwark layver nisrface Metwark layer

Fig 4.1: The network, Application and transport layer
T here are two types of network service
o Connection-oriented
o Connectionless
Similarly, there are also two types of transport service. The connection-oriented transport service is similar to the
connection-oriented network service in many ways.
In both cases, connections have three phases:
o Lstablishment
o Data transfer
o Release.
e Addressing and flow control are also similar in both layers. Furthermore, the connectionless transport
service is also very similar to the connectionless network service.

e The bottom four layers can be seen as the transport service provider, whereas the upper layer(s) are the
transport service user.

Page 2

2. Transport Service Primitives

» To allow users to access the transport service, the transport layer must provide some operations to
application programs, that is, a transport service interface. Each transport service has its own inter face.
» The transport service is similar to the network service, but there are also some important dif ferences.
» The main dif ference is that the network service is intended to model the service of fered by real
networks. Real networks can lose packets, so the network service is generally unreliable.

» The (connection-oriented) transport service, in contrast, is reliable

As an example, consider two processes connected by pipes in UNIX. They assume the connection between them
is perfect. They do not want to know about acknowledgements, lost packets, congestion, or anything like that.
What they want is a 100 percent reliable connection. Process A puts data into one end of the pipe, and process B
takes it out of the other.

A second dif ference between the network service and transport service is whom the services are intended for.
T he network service is used only by the transport entities. Consequently, the transport service must be convenient and

easy to use.

Table:4. 1 - The primitives for a simple transport service.

Primitive Packet sent Meaning
LISTEN . (mona) . Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE ' (none) Block until a DATA packet arrives
DISCONNECT = DISCONNECTION REQ. = This side wants to release the connection

Eg: Consider an application with a server and a number of remote clients.

. The server executes a "LISTEN" primitive by calling a library procedure that makes a
System call to block the server until a client turns up.

2. When a client wants to talk to the server, it executes a “CONNECT" primitive, with “"CONNECTION
REQUEST” TPDU sent to the server.

3. When it arrives, the TE unblocks the server and sends a “CONNECTION ACCEPTED” TPDU back to the client.

4. When it arrives, the client is unblocked and the connection is established. Data can now be exchanged using
“SEND" and "RECEIVE" primitives.

6. When a connection is no longer needed, it must be released to free up table space within the 2 transport

entries, which is done with “DISCONNECT" primitive by sending “DISCONNECTION REQUEST"

Page 3

TPDU. This disconnection can b done either by asymmetric variant (connection is released, depending on other

one) or by symmetric variant (connection is released, independent of other one).

Frame Packet TPOU
header headear header
/ i pa
U = -

TPOU paylead

Packel payload

Frame payload =

Figure 4, 2 - Nesting of TPDlUs, packets, and frames

e The term segment for messages sent from transport entity to transport entity.

e TCP. UDP and other Internet protocols use this term. Segments (exchanged by the transport layer) are

contained in packets (exchanged by the network layer).

® These packets are contained in frames(exchanged by the data link layer). When a frame arrives, the data link

layer processes the frame header and, if the destination address matches for local delivery, passes the

contents of the frame payload field up to the network entity.

e The network entity similarly processes the packet header and then passes the contents of the packet payload

up to the transport entity. This nesting is illustrated in Fig. 4. 2.

Connection request

Connect primitive

= TPDU received | IDLE executed

=)

¥
PASSIVE ACTIVE

ESTABLISHMENT ESTABLISHMENT

PENDING PENDING

T

H Connect primitive Connection accepted

' -

S __E e _XP_CHL'?;CL_ ESTABLISHED TPDU received

Disconnection

PASSIVE
DISCONNECT |[wm—mm e e e e e e =
PENDING

request TPDU 1
received }

L

Disconnect

prirrni'(i;/eO| ACTIVE
Sxecuto DISCONNECT

PENDING

Disconnect

IDLE

J

Discornnection request

primitive executed

TPDU received

Figure 4, 3 - A state diagram for a simple connection management scheme. Transitions labelled in italics are caused
by packet arrivals. The solid lines show the client’s state sequence. The dashed lines show the server’s state sequence.

In fig. 4. 3 each transition is triggered by some event, either a primitive executed by the local transport user

or an incoming packet. For simplicity, we assume here that each TPDU is separately acknowledged. We also assume

that a symmetric disconnection model is used, with the client going first. Please note that this model is quite

unsophisticated. We will look at more realistic models later on.

Page 4

BERKLEY SOCKETS
These primitives are socket primitives used in Berkley UNIX for TCP.

The socket primitives are mainly used for TCP. These sockets were first released as part of the Berkeley
UNIX 4. 2BSD sof tware distribution in 1983. They quickly became popular. The primitives are now widely used for
Internet programming on many operating systems, especially UNIX -based systems, and there is a socket-style API

for Windows called ‘ ‘winsock. '’

Primitive Meaning
SOCKET | Create a new communication end point
BIND | Attach a local address to a socket
LISTEMN Announce willingness to accept connections; give queug size
ACCEPT - Block the caller until a connection attempt arrives
CONNECT Actively attempt to establish a connection
SEMD | Send some data over the connection
RECEIVE | Receive some data from the connection
CLOSE Release the connection

Figure 4, 4 - The socket primitives for TCP.

The first four primitives in the list are executed in that order by servers.
The SOCKET primitive creates a new endpoint and allocates table space for it within the transport entity. The
parameter includes the addressing format to be used. the type of service desired and the protocol. Newly created

sockets do not have network addresses.

» The BIND primitive is used to connect the newly created sockets to an address. Once a server has bound an
address to a socket, remote clients can connect to it.

» The LISTEN call, which allocates space to queue incoming calls for the case that several clients try to
connect at the same time.

» The server executes an ACCEPT primitive to block waiting for an incoming connection.

Some of the client side primitives are. Here, too, a socket must first be created
> The GONNECT primitive blocks the caller and actively starts the connection process. When it
completes, the client process is unblocked and the connection is established.
» Both sides can now use SEND and RECEIVE to transmit and receive data over the full-duplex
connection.
» Connection release with sockets is symmetric. When both sides have executed a GLOSE primitive, the

connection is released.

Page 5§

ELEMENTS OF TRANSPORT PROTOCOLS

The transport service is implemented by a transport protocol used between the two transport entities. The
transport protocols resemble the data link protocols. Both have to deal with error control, sequencing, and flow
control, among other issues. The dif ference transport protocol and data link protocol depends upon the environment in
which they are operated.

These dif ferences are due to major dissimilarities between the environments in which the two protocols
operate, as shown in Fig.

At the data link layer, two routers communicate directly via a physical channel, whether wired or wireless,
whereas at the transport layer, this physical channel is replaced by the entire network. This dif ference has many

important implications for the protocols.

Router Router Subnet

W /
\ \Pnysical i< : _f-j ™

o
- — —

communication channel Host

(a) (b
Figure (a) Environment of the data link layer. (b) Environment of the transport layer.

In the data link layer, it is not necessary for a router to specify which router it wants to talk to. In the
transport layer, explicit addressing of destinations is required.

In the transport layer, initial connection establishment is more complicated, as we will see. Difference
between the data link layer and the transport layer is the potential existence of storage capacity in the subnet

Buffering and flow control are needed in both layers, but the presence of a large and dynamically varying
number of connections in the transport layer may require a dif ferent approach than we used in the data link layer.
T he transport service is implemented by a transport protocol between the 2 transport entities.

Host 1 Haost 2
T Senver 1 Sarver 2
Application ~, TSAP 1208 | Application Pl Pt
process layer \]-/ \1_}
s - -
E‘-\ Transport /'I “‘ \
H Transport layer TSAP 1522% TSAP1836
H cannectioan .
H '
i™ nsar Matwork i
: Ty i MSAP
H 1
e |
H [
- 1
H Data link .
' layear .
- '
L] '
5 *
H H
i Prysical :
x layer i
L3 1

Figure 4.8 illustrates the relationship between the NSAP, TSAP and transport connection. Application processes,

both clients and servers, can attach themselves to a TSAP to establish a connection to a remote

Page 6

TSAP.
T hese connections run through NSAPs on each host, as shown. The purpose of having TSAPs is that in

some networks, each computer has a single NSAP, so some way is needed to distinguish multiple transport end points

that share that NSAP.

The elements of transport protocols are:
ADDRESSING

Connection Establishment.
Connection Release.

Error control and flow control

SRR

Multiplexing.

1. ADDRESSING

When an application (e. g., a user) process wishes to set up a connection to a remote application process, it must
specify which one to connect to. The method normally used is to define transport addresses to which processes can
listen for connection requests. In the Internet, these endpoints are called ports.

T here are two types of access points.

TSAP (Transport Service Access Point) to mean a specific endpoint in the transport layer.

T he analogous endpoints in the network layer (i. e., network layer addresses) are not surprisingly called

NSAPs (Network Service Access Points). P addresses are examples of NSAPs.

Hoet 1 Haoet 2
Servar 1 Sarvar 2
Application TSAP 1208 | Application
process syar
. Y
: T r "
TEMEDD| . -
T Tranepen ayer [TSAP 1522 SAP1836
! connaciian K
T\\ N
H .]
: MNSAP ‘*det:n. ork : EAP
. aysr !
= |
: T
1 I
i Data link |
' aye i
\ I
i 1
H]
] Fhysica !
. ayer !
H i
] H
Y r

Fig 4. 5: TSAP and NSAP network connections

Application processes, both clients and servers, can attach themselves to a local TSAP to establish a
connection to a remote TSAP. These connections run through NSAPs on each host. The purpose of having TSAPs is
that in some networks, each computer has a single NSAP, so some way is needed to distinguish multiple transport
endpoints that share that NSAP.

Page 7

A possible scenario for a transport connection is as follows:

1. A mail server process attaches itself to TSAP 1522 on host 2 to wait for an incoming call. How a process attaches
itself to a TSAP is outside the networking model and depends entirely on the local operating system. A call such as
our LISTEN might be used, for example.

2. An application process on host 1 wants to send an email message, so it attaches itself to TSAP 1208 and issues a
CONNECT request. The request specifies TSAP 1208 on host 1 as the source and TSAP 1522 on host 2 as the
destination. This action ultimately results in a transport connection being established between the application
process and the server.

3. The application process sends over the mail message.

4. The mail server responds to say that it will deliver the message.

§. The transport connection is released.

2. CONNECTION ESTABLISHMENT :

With packet lif etimes bounded, it is possible to devise a fool proof way to establish connections safely.
Packet lifetime can be bounded to a known maximum using one of the following techniques:
e Restricted subnet design
e Putting a hop counter in each packet
e Time stamping in each packet
Using a 3-way hand shake, a connection can be established. T his establishment protocol doesn’ t require both sides

to begin sending with the same sequence number.

Fasl 1 Heat 2 Figeit ¢ Haid 2 Hal 1 Hogl 2
o o dupbeate i
— r% Ty -.:\.T.II
Rt - ___rﬁlq-nxj R dupbcali -
-\-""._ --.,___‘_ -:1"' __
. qpa:*;.r*
o
‘ e R o
- .._. - i@ .._._.- -
| g e -~ o,
.i"-.r.-.- ..-"f... T ,_'ﬁc“l-ieilhﬁ:
- "
! Oid dupieals
ey o
o _.ﬁ L ‘?E
!hg'qf!.-ql:'ﬁ- b I'JE"':!.HE*'-: ¥l JE-?_F 4
~2y =l oy
. ¥ L .-\--"‘_'
1}] el

Fig 4. 6: Three protocol scenarios for establishing a connection using a three-way handshake. CR denotes CONNEC
TION REQUEST (a) Normal operation. (b) Old duplicate CONNECTION REQUEST appearing out of nowhere. (c)
Duplicate CONNECTION REQUEST and duplicate ACK .

Page 8

» The first technique includes any method that prevents packets from looping, combined with some way of

bounding delay including congestion over the longest possible path. It is dif ficult, given that internets may

range from a single city to international in scope.

The second method consists of having the hop count initialized to some appropriate value and decremented
each time the packet is forwarded. The network protocol simply discards any packet whose hop counter

becomes zero.

» The third methed requires each packet to bear the time it was created, with the routers agreeing to discard

any packet older than some agreed-upon time.

In fig (A) Tomlinson (1975) introduced the three-way handshake.

» This establishment protocol involves one peer checking with the other that the connection request is indeed

current. Host 1 chooses a sequence number, x , and sends a CONNECTION REQUEST segment containing it
to host 2. Host 2replies with an ACK segment acknowledging x and announcing its own initial sequence

number, y.

Finally, host 1 acknowledges host 2's choice of an initial sequence number in the first data segment that it

sends

In fig (B) the first segment is a delayed duplicate CONNECTION REQUEST from an old connection.

>

>

>

This segment arrives at host 2 without host I's knowledge. Host 2 reacts to this segment by sending hostlan
ACK segment, in ef fect asking for verification that host 1 was indeed trying to set up a new connection.
When host 1 rejects host 2's attempt to establish a connection, host 2 realizes that it was tricked by a

delayed duplicate and abandons the connection. In this way, a delayed duplicate does no damage.

The worst case is when both a delayed CONNECTION REQUEST and an ACK are floating around in the subnet.

In fig (C) previous example, host 2 gets a delayed CONNECTION REQUEST and replies to it.

>

>

At this point, it is crucial to realize that host 2 has proposed using y as the initial sequence number for host
2 to host 1 traf fic, knowing full well that no segments containing sequence number y or acknowledgements to
y are still in existence.

When the second delayed segment arrives at host 2, the fact that z has been acknowledged rather than y
tells host 2 that this, too, is an old duplicate.

Page 9

» The important thing to realize here is that there is no combination of old segments that can cause the

protocol to fail and have a connection set up by accident when no one wants it.

3. CONNECTION RELEASE:

A connection is released using either asymmetric or symmetric variant. But, the improved protocol for
releasing a connection is a 3-way handshake protocol.
There are two styles of terminating a connection:
) Asymmetric release and
2) Symmetric release.
Asymmetric release is the way the telephone system works: when one party hangs up, the connection is
broken. Symmetric release treats the connection as two separate unidirectional connections and requires

each one to be released separately.

Fig—(a)

Fig-(b)

Fig-(c)

Fig-(d)

One of the user sends a
DISCONNECTION
REQUEST TPDU in
order to initiate
connection release.

When the
recipient sends back a DR
-TPDU, too, and starts a
timer.

When this DR arrives,
the original sender sends
back an ACK- TPDU and
releases the connection.
Finally, when the ACK-
TPDU the

receiver

it arrives,

arrives,
also

releases the connection.

Initial process is done in
the same way as in fig-
(a).

If the final ACK-TPDU
is lost, the situation is
the

timer is

saved by timer.
When the

expired, the connection is

released.

If the second DR is lost,
the user initiating the

disconnection will not
receive the expected
response, and will

timeout and starts all
over again.

Same as in fig—(¢)
except that all repeated
attempts to retransmit
the

DR is assumed to be
failed due to lost
TPDUs. After 'N
entries, the sender just
gives up and
releases the

connection.

Page 10

Host 1 Host 2 Host 1 Host 2
Send DR |—— (7=} Send DR [—— DR
+ start timer] + starl timer Te—
Send DR Send DR
'E_!_F:L-f—’_;' + slart timer Dﬂ-__.d—ﬂ—‘_f + start timer
Release — Heleas':e - op .
connection conneclion :
-
-
A
Send ACK h—_______C_.F{%__‘_ Ak ’
*| Release Send ACK !
: T, '
connaction Lost
W?— {Timeout)
release
connachion
(a) ()
Host 1 Host 2 Host 1 Host 2
Send DR [— oR Send DR [~ DR
+ start timer —_1;;:'-“ Send DA & + start limer T~ SendDR A&
o | start timer . b —="| slart timear
R e :
{ Timeouwt) DR nie ¥
send DR |7——= { Timleout) .
: | Send DR & —
+ start timer a 1 starttimer send DR et .
oR + star.l timer L .
Release | o—
connection i :
L] -
. .
Send ACK |_ H .
K Aeclease (N Tinfieouts) (Tim&out)
B el release release
conneclion connection
ic) (d)

4. FLOW CONTROL AND BUFFERING:

Flow control is done by having a sliding window on each connection to keep a fast transmitter from over
running a slow receiver. Buf fering must be done by the sender, if the network service is unreliable. The sender

buf fers all the TPDUs sent to the receiver. The buf fer size varies for dif ferent TPDUs.

They are:
a) Chained Fixed-size Buf fers
b) Chained Variable-size Buf fers
¢) One large Circular Buf fer per Connection

(a). Chained Fixed-size Buffers:

If most TPDUs are nearly the same size, the buf fers are organized as a pool of identical size buf fers, with

one TPDU per buffer.

Page 11

(b). Chained Variable-size Buf fers:

This is an approach to the buf fer-size problem. i.e., if there is wide variation in TPDU size, from a few
characters typed at a terminal to thousands of characters from file transfers, some problems may occur:
e If the buffer size is chosen equal to the largest possible TPDU, space will be wasted whenever a short
TPDU arrives.
e If the buffer size is chosen less than the maximum TPDU size, multiple buf fers will be needed for long
TPDUs.

To overcome these problems, we employ variable-size buffers.

(c). One large Circular Buffer per Connection:
A single large circular buf fer per connection is dedicated when all connections are heavily loaded.
1. Source Buf fering is used for low band width bursty traf fic
2. Destination Buf fering is used for high band width smooth traf fic.
3. Dynamic Buf fering is used if the traf fic pattern changes randomly.

-

- - - | - -
= TPDWU 1
r
— L TPOU 2
} TPDU 3
{a) ()
\ - TPDU 4
Unused
space)
s

(e

Figure 4.7. (a) Chained fixed-size buffers. (b) Chained variable-sized buffers. (¢c) One large circular buffer per
connection.

8. MULTIPLEXING:

In networks that use virtual circuits within the subnet, each open connection consumes some table space in the
routers for the entire duration of the connection. If buf fers are dedicated to the virtual circuit in each router as well,
a user who left a terminal logged into a remote machine, there is need for multiplexing. There are 2 kinds of

multiplexing :

Page 12

Transporn address

Layer o _ _ o o o

" - - Network
4 ’f_,f address
3 \/

H-‘___ /.___al"'
2 Router lines
1
To router
(a) (b)

Figure 4, 8. (a) Upward multiplexing. (b) Downward multiplexing

(a). UP-WARD MULTIPLEXING:

In the below figure, all the 4 distinct transport connections use the same network connection to the remote
host. When connect time forms the major component of the carrier’'s bill, it is up to the transport layer to group

port connections according to their destination and map each group onto the minimum number of port connections.

(b). DOWN-WARD MULTIPLEXING:
e If too many transport connections are mapped onto the one network connection, the
per formance will be poor.
e If too few transport connections are mapped onto one network connection, the service will
be expensive.
T he possible solution is to have the transport layer open multiple connections and distribute the traf fic among them
on round-robin basis, as indicated in the below figure:

With ‘K’ network connections open, the ef fective band width is increased by a factor of k.

TRANSPORT PROTOCOLS - UDP

The Internet has two main protocols in the transport layer, a connectionless protocol and a commection-
oriented one. The protocols complement each other. The connectionless protocol is UDP. It does almost nothing
beyond sending packets between applications, letting applications build their own protocols on top as needed.

The connection-oriented protocol is TCP. It does almost everything. It makes connections and adds reliability

with retransmissions, along with flow control and congestion control, all on behalf of the

Page 13

applications that use it. Since UDP is a transport layer protocol that typically runs in the operating system and

protocols that use UDP typically run in user s pace, these uses might be considered applications.

INTROUCTION TO Ubp

» The Internet protocol suite supports a connectionless transport protocol called UDP (User Datagram Protocol).
UDP provides a way for applications to send encapsulated IP datagrams without having to establish a
connection.

» UDP transmits segments consisting of an 8-byte header followed by the pay-load. The two ports serve to
identify the end-points within the source and destination machines.

» When a UDP packet arrives, its payload is handed to the process attached to the destination port. T his
attachment occurs when the BIND primitive. Without the port fields, the transport layer would not know
what to do with each incoming packet. With them, it delivers the embedded segment to the correct

application.

- 32 Bits -

Source port Destination port

UDP length UDP checksum

Fig 4. 9: The UDP header
Source port, destination port: Identifies the end points within the source and destination machines.
UDP length: Includes 8-byte header and the data
UDP checksum: Includes the UDP header, the UDP data padded out to an even number of bytes if need be. It is an
optional field

REMOTE PROCEDURE CALL
> In a certain sense, sending a message to a remote host and getting a reply back is like making a function call
in a programming language. This is to arrange request-reply interactions on networks to be cast in the form
of procedure calls.
» For example, just imagine a procedure named get /P address (host name) that works by sending a UDP packet
to a DNS server and waiting or the reply, timing out and trying again if one is not forthcoming quickly

enough. In this way. all the details of networking can be hidden from the programmer.

» RPC is used to call remote programs using the procedural call. When a process on machine 1 calls a procedure

on machine 2, the calling process on 1 is suspended and execution of the called procedure takes place on 2.
» Information can be transported from the caller to the callee in the parameters and can come back in the

procedure result. No message passing is visible to the application programmer. This technique is known as

RPC (Remote Procedure Call) and has become the basis for many networking applications.

Page 14

Traditionally, the calling procedure is known as the client and the called procedure is known as the
server.

» In the simplest form, to call a remote procedure, the client program must be bound with a small library
procedure, called the client stub, that represents the server procedure in the client’ s address space. Similarly,
the server is bound with a procedure called the server stub. These procedures hide the fact that the

procedure call from the client to the server is not local.

Cliemt P LU Senver CPLU
—— Cliant Sarwar,
i W =tun =D g ﬁ
Cllern) Server
1“&,___ __F__',,-" -
Z 4
Cmerating systerm & Dpamsting system
e A -
Mt

Fig 4. 10: Steps in making a RPC

Step 1is the client calling the client stub. This call is a local procedure call, with the parameters pushed onto the
stack in the normal way.

Step 2 is the client stub packing the parameters into a message and making a system call to send the message. Packing
the parameters is called marshaling.

Step 3 is the operating system sending the message from the client machine to the server machine.

Step 4 is the operating system passing the incoming packet to the server stub.

Step § is the server stub calling the server procedure with the unmarshaled parameters. The reply traces the

same path in the other direction.

The key item to note here is that the client procedure, written by the user, just makes a normal (i. e., local)
procedure call to the client stub, which has the same name as the server procedure. Since the client procedure and
client stub are in the same address space, the parameters are passed in the usual way.

Similarly, the server procedure is called by a procedure in its address space with the parameters it expects.
To the server procedure, nothing is unusual. In this way, instead of 1/0 being done on sockets, network
communication is done by faking a normal procedure call. With RPC, passing pointers is impossible because the client

and server are in dif ferent address spaces.

Page 15

ICP (TRANSMISSION CONTROL PROTOCOL)

It was specifically designed to provide a reliable end-to end byte stream over an unreliable network. It was
designed to adapt dynamically to properties of the inter network and to be robust in the face of many kinds of
failures.

Each machine supporting TCP has a TCP transport entity, which accepts user data streams from local
processes, breaks them up into pieces not exceeding 64kbytes and sends each piece as a separate IP datagram. When
these datagrams arrive at a machine, they are given to TCP entity, which reconstructs the original byte streams. It
is up to TCP to time out and retransmits them as needed, also to reassemble datagrams into messages in proper
sequence.

T he dif ferent issues to be considered are:

The TCP Service Model

The TCP Protocol

The TCP Segment Header

T he Connection Management
TCP Transmission Policy
TCP Congestion Gontrol
TCP Timer Management.

NSaAxAdhd™

The TCP Service Model

e TGP service is obtained by having both the sender and receiver create end points called SOCKETS

e LEach socket has a socket number(address)consisting of the IP address of the host, called a “PORT” (=
TSAP)

e To obtain TCP service a connection must be explicitly established between a socket on the sending
machine and a socket on the receiving machine

e Al TCP connections are full duplex and point to point i. e., multicasting or broadcasting is not
supported.

e A TCP connection is a byte stream, not a message stream i. e., the data is delivered as chunks

. > 4* 612 bytes of data is to be transmitted,

Sender Receiver
T w1
.:.H..T
[:l A l B | Il c I D | Ijﬁl a lj B | I: C I,l D Four 512-byte chunks
J " " ' d -
51 642 612 12 512 LR -3 51432 542 Lar}
AB Twe 1024-byte chunks
1024 1024

{eork

ABCD one 2048 byle chunk
2048

Page 16

Sockets:
A socket may be used for multiple connections at the same time. In other words, 2 or more connections may
terminate at same socket. Connections are identified by socket identifiers at same socket. Connections are identified

by socket identifiers at both ends. Some of the sockets are listed below:

_Frimitlave Meaning
SQCKET _ Create a new communication end point
BIMND | Adtach a local address to a socket
LISTEM Announce willingness 0 accept connections; give queus size
ACCEPT . Block the caller until a connection attempt arfives
CONMNECT Actively attempt to establish a conneaction
SEMD | Send some data over the connection
RECEIVE | Receive some data from the connection
CLOSE Release the connection

Ports: Port numbers below 256 are called Well- known ports and are reserved for standard services.

Eg:

PORT-21 To establish a connection to a host to transfer a file using FTP

PORT-23 To establish a remote login session using TELNET

The TCP Protocol
> A key feature of TCP, and one which dominates the protocol design, is that every byte on a TCP
connection has its own 32-bit sequence number.
» When the Internet began, the lines between routers were mostly 56-kbps leased lines, so a host blasting
away at full speed took over 1 week to cycle through the sequence numbers.
The basic protocol used by TCP entities is the gliding window protocol.

When a sender transmits a segment, it also starts a timer.

Y VY

» When the segment arrives at the destination, the receiving TCP entity sends back a segment (with data if any
exist, otherwise without data) bearing an acknowledgement number equal to the next sequence number it
expects to receive.

» |If the sender's timer goes of f before the acknowledgement is received, the sender transmits the segment

again,

The TCP Segment Header
Every segment begins with a fixed-format, 20-byte header. The fixed header may be followed by header

options. After the options, if any, up to 65,535 - 20 - 20 = 65, 495 data bytes may follow, where the first 20
refer to the IP header and the second to the TCP header. Segments without any data are legal and are commonly used

for acknowledgements and control messages.

Page 17

L L L L - L L | L L L L L I I | 2 L 1 1 1 1 1 1 Il Il] 1 1 1

Source port Destination port

Seqguence number

Acknowledgement number

TCP AP R S|F
header R|IC|S|S5|Y|1 Window size
langtin G K| H| T NN
Checksum Urgent pointer
= Options (0 or more 32-bit words) =i

Drata (optional) f—

Fig 4.11: The TCP Header

Source Port, Destination Port : Identify local end points of the connections

Sequence number: Specifies the sequence number of the segment

Acknowledgement Number: Specifies the next byte expected.

TCP header length: Tells how many 32-bit words are contained in TCP header URG: It is

set to 1if URGENT pointer is in use, which indicates start of urgent data. ACK: It is set

to 1 to indicate that the acknowledgement number is valid.

PSH: Indicates pushed data

RST: It is used to reset a connection that has become confused due to reject an invalid segment or refuse an
attempt to open a connection.

FIN: Used to release a connection.

SYN: Used to establish connections.

TCP Connection Establishment

To establish a connection, one side, say, the server, passively waits for an incoming connection by executing

the LISTEN and ACCEPT primitives, either specifying a specific source or nobody in particular.

The other side, say, the client, executes a CONNECT primitive, specifying the IP address and port to which
it wants to connect, the maximum TCP segment size it is willing to accept, and optionally some user data (e. g., a

password).

The CONNECT primitive sends a TCP segment with the SYN bit on and ACK bit of f and waits for a response.

Page 18

Haost 1 Host 2 Host 1 Host 2
— = —

L sYy — S¥YMN(sEg -
—SNeEa~g | e
R | P l‘ll;"—_‘.EQ ‘_—"'_11_——'—';— B
_SYnSEE
=) 43 w2
= cHo=% — oY =%
=y, A Sl Pt
'I S "S_’EP — I~ = N_}_EEO =¥~
" -\""-\—\.,___
S}?U .-’§“‘-—
=X
Ak
- T ‘?;‘:-;jm
—— T CH =y + 1)

(a) (b}

Fig 4. 12: a) TCP Connection establishment in the normal case b) Call Collision

ICP Connection Release

» Although TCP connections are full duplex, to understand how connections are released it is best to think of
them as a pair of simplex connections.

» Each simplex connection is released independently of its sibling. To release a connection, either party can send
a TCP segment with the F/N bit set, which means that it has no more data to transmit.

» When the FINis acknowledged, that direction is shut down for new data. Data may continue to flow
indefinitely in the other direction, however.

» When both directions have been shut down, the connection is released.

» Normally, four TCP segments are needed to release a connection, one F/N and one ACK for each direction.
However, it is possible for the first ACK and the second F/N to be contained in the same segment, reducing
the total count to three.

TCP Connection Management Modeling

The steps required establishing and release connections can be represented in a finite state machine with the 11 states
listed in Fig. 4.13. In each state, certain events are legal. When a legal event happens, some action may be taken. If
some ot her event happens, an error is reported.

State Drescription
CLOSED Mo conmnection is active or pending
LISTEM The server is waiting for an incoming call
SWN RCWD: A, connecticon request has arrived: wait for ACK
SW SEMNT The application has started o opan a connection
ESTABLISHED The nrormal data transfer state
Fird WaAaAlT 1 The applicatiaon has said il is finished
Fir WWAIT 2 The otihrer side has agreed 1o release
TIMELD WWAlT Wi'ait for all packets to die oif
CLOSIMNG Both sides hawve tried to close Ssimultancoously
CLOSE WAalT The other side has initiated a raelcase
LAST Ak VWwait for all packets to die off

Figure 4, 13. The states used in the TCP connection management finite state machine.

Page 19

(Start)

CONMECT/SYMN (Step 1 of the 3-way handshake)
CLOSED |
CLOSE/— i

LISTEN/— | | CLOSE—

SYHMUSYM + ACK

(Step 2 .~ of the 3-way handshake)

-,

RST¢=— '-._h_ SEMDSSYMN

SYM - svm
HDI":D 5 SYHR/ISYR - ACK (simullaneous opan) 1 E.'E T
H
H
L]
E (Crata transfer state)
i BT — [. svMiacksack S
““““““““““ *"i ST AR TSR] | [Step 3 of the 3-way handshake)
CLOSE/FIMN E
CLOSE/FIN L_ FIr S
[Active closal I;Passwg‘-_ closal
A e e B o S A e S O N T S B i cbeon | pite o, R
L}) " L} L
E - 2ol | E : CLOSE E
H i i - H
H WA 1 ——\] | ELCHING | i [| WAaIT | H
i : i E H g i
: PUCH— [ACW— : ; I CLOSEFIN!
i 1 I H I
| I v X
FIM o+ AUCZHSACH 1 H
Fin WO e e | : i LAST :
H H
WAIT 2 =TT |owAaT E : : :
= . - = 3 H [} i H
[Timeout) :
H
. AR — ‘-"
I CLOSED]* _____________________

{Go back to start)

Figure 4. 14 - TCP connection management finite state machine.

TGP Connection management from server’ s point of view:

1. The server does a LISTEN and settles down to see who turns up.

2. When a SYN comes in, the server acknowledges it and goes to the SYNRCVD state

3. When the servers SYN is itself acknowledged the 3-way handshake is complete and server goes to the
ESTABLISHED state. Data transfer can now occur.

4. When the client has had enough, it does a close, which causes a FIN to arrive at the server [dashed
box marked passive close].

6. The server is then signaled.

6. When it too, does a CLOSE. a FIN is sent to the client.

7. When the client’ s acknowledgement shows up, the server releases the connection and deletes the

connection record.

Page 20

TCP Transmission Policy

Sendar Reacaiver FRecaivers
Application buffer
1:50-_&5 a2k -— o 45
wirite
——— - e Empity
LA [SEg T4
——H=0] S
‘——____ —
R i
. [ACK=204BWIN=204B}——
Application
does a 2K - -
write _ ___'I_EE_J[_ELE_Q =2048 |
Y _;—'—_'_'_'_'_'_ — |
Sender is e Application
blocked f—ﬁﬂ_@_ﬂlﬁ’; T reads 2K
__P_'____J,I____'____— [2"_ =
— T = 20AE
_— WL = =
=a = 409t Y=
i [T=]
Sender may
send up to 2K —
——
T IK T
EEE—"——?‘_E_Q = 4
==d9957 . 1k 2K
_________‘_‘_L

Figure 4. 15 - Window management in TCP.

1. In the above example, the receiver has 4096-byte buf fer.

2. If the sender transmits a 2048-byte segment that is correctly received, the receiver will acknowledge the

segment.
3. Now the receiver will advertise a window of 2048 as it has only 2048 of buf fer space, now.
4. Now the sender transmits another 2048 bytes which are acknowledged, but the advertised window is' 0.

6. The sender must stop until the application process on the receiving host has removed some data from the

buf fer, at which time TCP can advertise a layer window.

ICP CONGESTION CONTROL :

TCP does to try to prevent the congestion from occurring in the first place in the following way:

Page 21

When a connection is established, a suitable window size is chosen and the receiver specifies a window based
on its buf fer size. If the sender sticks to this window size, problems will not occur due to buf fer overflow at the

receiving end. But they may still occur due to internal congestion within the network. Let s see this problem occurs.
g y may g p

__J)JLQTransmissinn _ f'J
— el rate adjustment —hi e

Transmission
netwoark Intermal

congestion

el - jor
(; . TR . %
'\M___________ A L_______Bﬁ____ L
. Lﬂ'gﬂ"::s:s;ﬁ@

(a) (b}

Figure 4. 16. (a) A fast network feeding a low-capacity receiver. (b) A slow network feeding a high-capacity
receiver.

Page 22

In fig (a): We see a thick pipe leading to a small- capacity receiver. As long as the sender does not send more
water than the bucket can contain, no water will be lost.

In fig (b): The limiting factor is not the bucket capacity, but the internal carrying capacity of the n/w. if too
much water comes in too fast, it will backup and some will be lost.

» When a connection is established, the sender initializes the congestion window to the size of the max
segment in use our connection.

» It then sends one max segment . if this max segment is acknowledged before the timer goes of f, it adds one
segment s worth of bytes to the congestion window to make it two maximum size segments and sends 2
segments.

> As each of these segments is acknowledged, the congestion window is increased by one max segment size.

» When the congestion window is ‘n’ segments, if all ‘n’ are acknowledged on time, the congestion
window is increased by the byte count corresponding to ‘n’ segments.

» The congestion window keeps growing exponentially until either a time out occurs or the receiver’s
window is reached.

» The internet congestion control algorithm uses a third parameter, the “thresheld” in addition to receiver and

congestion windows.

Dif ferent congestion control algorithms used by TCP are:
e RTT variance Estimation.
e Exponential RTO back-of f Re-transmission Timer Management
e Karn's Algorithm
o Slow Start
e Dynamic window sizing on congestion
e Fast Retransmit Window Management

e Fast Recovery

ICP TIMER MANAGEMENT :

TGP uses 3 kinds of timers:
1. Retransmission timer
2. Persistence timer

3. Keep-Alive timer.

1. Retransmission timer: When a segment is sent, a timer is started. If the segment is acknowledged before the
timer expires, the timer is stopped. If on the other hand, the timer goes of f before the acknowledgement comes in,
the segment is retransmitted and the timer is started again. The algorithm that constantly adjusts the time-out

interval, based on continuous measurements of n/w performance was proposed by JACOBSON and works as follows:

Page 23

® for each connection, TCP maintains a variable RTT, that is the best current estimate of the round trip
time to the destination inn question.
e When a segment is sent, a timer is started, both to see how long the acknowledgement takes and to
trigger a retransmission if it takes too long.
e If the acknowledgement gets back before the timer expires, TCP measures how long the measurements took

say M

2. Persistence timer:
It is designed to prevent the following deadlock:

e The receiver sends an acknowledgement with a window size of ‘0" telling the sender to wait later, the
receiver updates the window, but the packet with the update is lost now both the sender and receiver are
waiting for each other to do something

e when the persistence timer goes of f, the sender transmits a probe to the receiver the response to the
probe gives the window size

e if it is still zero, the persistence timer is set again and the cycle repeats

e if it is non zero, data can now be sent

3. Keep-Alive timer: When a connection has been idle for a long time, this timer may go of f to cause one side to

check if other side is still there. If it fails to respond, the connection is terminated.

DOMAIN NAME SYSTEM
This is primarily used for mapping host and e-mail destinations to |P addresses but can also be used other

purposes. DNS is defined in RFCs 1034 and 1035.

Working : -
To map a name onto an P address, an application program calls a library procedure called Resolver,

passing it the name as a parameter.

The resolver sends a UDP packet to a local DNS server, which then looks up the name and returns the [P address

to the resolver, which then returns it to the caller.

Armed with the IP address, the program can then establish a TCP connection with the destination, or send

Page 24

it UDP packets.

1. The DNS name space.
2. Resource Records.
3. Name Servers.

1. THE DNS NAME SPACE:

T he Internet is divided into several hundred top level domains, where each domain covers many hosts. Each domain is
partitioned into sub domains, and these are further partitioned as so on. All these domains can be represented by a tree,
in which the leaves represent domains that have no sub domains. A leaf domain may contain a single host, or it may
represent a company and contains thousands of hosts. Lach domain is named by the path upward from it to the root. The
components are separated by periods (pronounced “dot”)

Eg: Sun Microsystems Engg. Department = eng. sun. com.

T he top domain comes in 2 flavours: -

Generic: com(commercial), edu(educational instructions), mil(the U. S armed forces, government), int (certain

international or ganizations), net(network providers), org (non profit organizations).

Country: include 1 entry for every country. Domain names can be either absolute (ends with a period e. g.
eng. sum. com) or relative (doesn't end with a period). Domain names are case sensitive and the component names

can be up to 63 characters long and full path names must not exceed 255 characters.

| - Generic - | | - Countrias -
int com adu gov mil org et ip us nl
% 7N SN,
UM yale acm iees ac es] oce Vi
AN A | | I
ang 5 eng jack il keio nec c5
| | £
T linda -::Is csl flits it
robot pc24

Figure 6-1. A portion of the Internet domain name space.

Insertions of a domain into the tree can be done in 2 days: -
* Under a generic domain (Eg: cs. yale. edu)

* Under the domain of their country (E. g: e¢s. yale. ct. us)

2. RESOURCE RECORDS:

Every domain can have a sent of resource records associated with it. For a single host, the most common

Page 25

resource record is just its I[P address. When a resolver gives a domain name to DNS, it gets both the resource records
associated with that name i. e., the real function of DNS is to map domain names into resource records. A resource

record is a 5-tuple and its format is as follows:

| Domain Name | Time to live | Type | Class | Value |

Domain _name : Tells the domain to which this record applies. Time- to- live : Gives an identification of how stable
the record is (High Stable = 86400 i. e. no. of seconds /day) (High Volatile = 1 min)

Type: Tells what kind of record this is.
Class: It is IN for the internet information and codes for non internet information

Value: This field can be a number a domain name or an ASCII string

j ffpe . l:l-earllng [.‘U'HIUE

S04 Start of Authority Parameters for this zone

A IP address of a host =~ 32-Bit integer

MX | Mail exchange [Priority, domain I.m;illing to accept e-mail
NS ' Name Server | Name of a server for this domain
CNAME = Canonical name Domain name

PTH Paointer Alias for an IP address

HINFO | Hostdescription | CPU and OS in ASCII

TXT Text Uninterpreted ASCII taxt

3. NAME SERVERS:

It contains the entire database and responds to all queries about it. DNS name space is divided up into non-
overlapping zones, in which each zone contains some part of the tree and also contains name servers holding the

authoritative information about that zone.

|- - Generic '-| |- - Countries — -

usy L nl} ..
P <

A\
5 W

Figure 8-2. Part of the DNS name space showing the division into zones.

When a resolver has a query about a domain name, it passes the query to one of the local name servers:

. If the domain being sought falls under the jurisdiction of name server, it returns the authoritative resource

Page 26

records (that comes from the authority that manages the record, and is always correct).
2. If the domain is remote and no information about the requested domain is available locally the name server sends
a query message to the top level name server for the domain requested.

E. g. : A resolver of flits. ¢s. vle. nl wants to know the IP address of the host Linda. cs. yale. edu

VUGS Edu Yala Yale C3
Originator j Mamesever ., mAmeSEVer . nAmEsaver | NAmd Sever
fits. 5. vut.nl | csunl |edu-servar.ngl| yale.edu Gs.yale.edu
3 ! 6 5

Figure §-3. How a resolver looks up a remote name in eight steps.

Step 1: Resolver sends a query containing domain name sought the type and the class to local name server,
cs. vu. nl.

Step 2: Suppose local name server knows nothing about it, it asks few others nearby name servers. If none of them
know, it sends a UDP packet to the server for edu-server. net.

Step 3: This server knows nothing about Linda. cs. yale. edu or cs. yale. edu and so it forwards the request to the
name server for yale. edu.

Step 4: This one forwards the request to cs. yale. edu which must have authoritative resource records.

Step § to 8: The resource record requested works its way back in steps 5-8 T his query method is known as
Recursive Query

3. When a query cannot be satisfied locally, the query fails but the name of the next server along the line to try is

returned.

ELECTRONIC MAIL
1. ARCHITECTURE AND SERVICES :

E-mail systems consist of two subsystems. They are:-
(1). User Agents, which allow people to read and send e-mail
(2). Message Transfer Agents. which move messages from source to destination E-
mail systems support § basic functions: -
a. Composition
Transfer

b

¢. Reporting
d. Displaying
e

Disposition

(a). Composition: It refers to the process of creating messages and answers. Any text editor is used for body of the
message. While the system itself can provide assistance with addressing and numerous header fields attached to

each message.

(b). Reporting: It has to do with telling the originator what happened to the message that is, whether it was

Page 27

delivered, rejected (or) lost.

(c). Transfer: It refers to moving messages from originator to the recipient.

(d). Displaying: Incoming messages are to be displayed so that people can read their email.

(e). Disposition: It concerns what the recipient dose with the message after receiving it. Possibilities include throwing
it away before reading (or) after reading, saving it and so on.

Most systems allow users to create mailboxes to store incoming e-mail. Commands are needed to create and destroy

mailboxes, inspect the contents of mailboxes, insert and delete messages from mailboxes, and so on.

)

e T Name: Mr. Daniel Dumkop!
3re Street: 18 Willow Lana Figure
Mr. Daniel D g é- City: mﬂ;ﬂ Plains | E 5-4:
18 Willow Lane : 25:‘:6&_ o004
White Plains, NY 10604 i Priaity: u,ggm
L Encryption: None]
. ' From: United Gizmo]
';’;u“'jm‘i“g“;“ 4 Address: 180 Main St
= Location: Boston, MA 02120
Boston, MA.02120 - Date: Sept. 1, 2002
Sept. 1, 2002 + Subject: Invoice 1081
Subject: Invoice 1081 +
i
Daar Mr. Dumniopd, Dear Mr. Dumikopd,
Cur computer records Our computer records
show thal you stll have show that you still have » Message
not paid the above invioice not paid the abowe invoice
of $0.00. Please send us a - of S$0.00. Please send us a
check for 50.00 prompily. E check for $0.00 prompily.
Yours truty Yours truly
United Gizmo United Gizmao
L
{a)]3]

Envelopes and messages. (a) Paper mail. (b) Electronic mail.
() THE USER AGENT

A user agent is normally a program (sometimes called a mail reader) that accepts a variety of commands for

composing, receiving, and replying to messages, as well as for manipulating mailboxes.

SENDING E-MAIL

To send an e-mail message, a user must provide the message, the destination address, and possibly some other
parameters. The message can be produced with a free-standing text editor, a word processing program, or possibly
with a specialized text editor built into the user agent. The destination address must be in a format that the user agent

can deal with. Many user agents expect addresses of the form user@dns-address.

READING E-MAIL

Page 28

When a user agent is started up, it looks at the user's mailbox for incoming e-mail before displaying anything on
the screen. Then it may announce the number of messages in the mailbox or display a one-line summary of each one and

wait for a command.

(2) MESSAGE FORMATS
RFC 822

Messages consist of a primitive envelope (described in RFC 821), some number of header fields, a blank line, and then
the message body. Each header field (logically) consists of a single line of ASCII text containing the field name, a colon,

and, for most fields, a value.

Header _ Meaning
To: _ E-mail address{es) of primary recipient{s)
o E-mail address{es) of secondary recipient{s)
Boo: _ E-mail address{es) for blind carbon copies
From: _ Ferson or people who created the message
Sender: . E-mail address of the actual sender
Received: Line added by each transfer agent along the route
Retum-Path: Can be used to identify a path back to the sender

Figure 8-§: RFC 822 header fields related to message transport

MIME — The Multipurpose Internet Mail Extensions

RFC 822 specified the headers but left the content entirely up to the users. Nowadays, on the worldwide Internet, this

approach is no longer adequate. The problems include sending and receiving

1. Messages in languages with accents (e. g., French and German).

2. Messages in non-Latin alphabets (e. g., Hebrew and Russian).

3. Messages in languages without alphabets (e. g. . Chinese and Japanese).

4. Messages not containing text at all (e. g., audio or images).
A solution was proposed in RFC 1341 called MIME (Multipurpose Internet Mail Extensions)

The basic idea of MIME is to continue to use the RFC 822 format, but to add structure to the message body and

define encoding rules for non-ASCIl messages. By not deviating from RFC 822, MIME messages can be sent using the

existing mail programs and protocols. All that has to be changed are the sending and receiving programs, which users

can do for themselves.

Page 29

Header Meaning
MIME-Version: Identifies the MIME version
Content-Description: Human-readable string telling what is in the message
Content-ld: . Unique identifiar
Content-Transfer-Encoding: . How the body is wrapped for transmission
Content-Type: Type and format of the content

MESSAGE TRANSFER

The message transfer system is concerned with relaying messages from the originator to the recipient. The
simplest way to do this is to establish a transport connection from the source machine to the destination machine and

then just transfer the message.

SMTP—THE SIMPLE MAIL TRANSFER PROTOCOL

SMTP is a simple ASCIl protocol. After establishing the TCP connection to port 25, the sending machine,
operating as the client, waits for the receiving machine, operating as the server, to talk first. The server starts by
sending a line of text giving its identity and telling whether it is prepared to receive mail. If it is not, the client
releases the connection and tries again later.

Even though the SMTP protocol is completely well defined, a few problems can still arise.
One problem relates to message length. Some older implementations cannot handle messages exceeding 64 KB.

Another problem relates to timeouts. If the client and server have dif ferent timeouts, one of them may give

up while the other is still busy, unexpectedly terminating the connection.
Finally, in rare situations, infinite mailstorms can be triggered.

For example, if host 1 holds mailing list A and host 2 holds mailing list B and each list contains an entry for the
other one, then a message sent to either list could generate a never-ending amount of e-mail traf fic unless somebody
checks for it.

FINAL DELIVERY

With the advent of people who access the Internet by calling their ISP over a modem, it breaks down.

One solution is to have a message transfer agent on an ISP machine accept e-mail for its customers and store it in their

mailboxes on an ISP machine. Since this agent can be on-line all the time, e-mail can be sent to it 24 hours a day.

POP3

Page 30

SMTP Internet Message Usar

| 1 transfer agent
—y l 1—'“\ agent HE%:)/

e —— T ——
\ S =
(a) Eéﬁ'ding Permanent Mailbux"fﬁecéiw’ﬁg
host connection higst
SMTP Internet Message POP3 Liser
| transfer. ‘__f_,:EGrf:r [agent _
™y — agent T
T L, %4 Q 5:1 ' O
() Sending Maulmx"f ISP's Dial-up Users
hiost machine connection FC
Figure:65-7

(a) Sending and reading mail when the receiver has a permanent Internet connection and the user agent runs on
the same machine as the message transfer agent.

(b) Reading e-mail when the receiver has a dial-up connection to an ISP

POP3 begins when the user starts the mail reader. The mail reader calls up the ISP (unless there is already a
connection) and establishes a TCP connection with the message transfer agent at port 110. Once the connection has been

established, the POP3 protocol goes through three states in sequence:
1. Authorization.
2. Transactions.
3. Update.

T he authorization state deals with having the user log in.

T he transaction state deals with the user collecting the e-mails and marking them for deletion from the mailbox.
T he update state actually causes the e-mails to be deleted.

IMAP (Internet Message Access Protocol).

POP3 normally downloads all stored messages at each contact, the result is that the user's e-mail quickly gets

spread over multiple machines, more or less at random; some of them not even the user's.

T his disadvantage gave rise to an alternative final delivery protocol, IMAP (Internet Message Access Protocol). IMAP
assumes that all the e-mail will remain on the server indefinitely in multiple mailboxes. IMAP provides extensive
mechanisms for reading messages or even parts of messages, a feature useful when using a slow modem to read the text

part of a multipart message with large audio and video attachments.

Page 31

